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LIQUID CRYSTALS, 1989, VOL. 5, No. 3, 929-940 

Invited Lecture 
Columnar ordering as an excluded-volume effect 

by D. FRENKEL 
FOM Institute for Atomic and Molecular Physics, P.O. Box 41883, 

1009 DB Amsterdam, The Netherlands 

The nature of the possible liquid-crystalline phases that a molecular or colloidal 
system may exhibit depends sensitively on the shape of the constituent particles. 
Recent computer simulations on fluids of consisting of non-spherical hard-core 
molecules suggest that, in order to predict the relative stability of isotropic, 
nematic, smectic and columnar phases in such very simple model fluids, it is not 
enough to characterize the molecular shape by an overall length-to-width ratio. 
New results of computer simulations on a model for disc-like molecules clearly 
illustrate this point. 

1. Introduction 
Entropy is often loosely referred to as a measure of the disorder in a system. The 

second law of thermodynamics expresses the fact that an isolated system tends to 
maximize its entropy, and hence its ‘disorder’. At first sight, it is therefore somewhat 
surprising to find that this tendency to maximize entropy often appears to act as an 
ordering force. A famous example of such ‘entropy-induced’ ordering is contained in 
Onsager’s theory of the transition from an isotropic fluid to a nematic liquid crystal 
[l]. Onsager showed that, at a sufficiently high density, a system of long rod-like 
molecules will spontaneously form an orientationally ordered phase. Yet, although 
the entropy associated with the orientational degrees of freedom does indeed decrease 
during this transition, this decrease is more than offset by the increase in the trans- 
lational entropy of the system. The latter increase is a consequence of the fact that the 
average excluded volume of two rods in an orientationally ordered phase is smaller 
than in the isotropic phase. 

What is more surprising is that it is even possible to have ‘entropy-induced’ 
ordering in systems without any orientational degrees of freedom. This was demon- 
strated in 1957 in the earliest molecular dynamics simulations by Alder and Wainwright 
[ 2 ] .  These simulations showed that a system of hard spheres can undergo a first-order 
phase transition from a liquid to the crystalline solid. Again, entropy is the only 
driving force for this transition: the system loses ‘configurational’ entropy by ordering 
in a regular lattice, but it gains entropy because, at coexistence, the available free 
volume per molecule is larger in the solid than in the liquid. 

It is important to note that the freezing transition of the hard-sphere model is not 
merely of academic interest. For instance, Kang, Ree and Ree [3] have developed a 
very successful perturbation scheme to predict the melting behaviour of atomic solids 
using the hard-sphere model as a reference system. 
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930 D. Frenkel 

However, entropic ordering is not limited to the two classes of phase transitions 
mentioned above. An example of a model where both nematic ordering and freezing 
are caused by excluded-volume effects is a system consisting of hard ellipsoids of 
revolution. This model system was studied numerically by Frenkel and Mulder [4]. 
The shape of hard ellipsoids of revolution is characterized by a single parameter x, the 
ratio of the length of the major axis (2 a)  to that of the minor axis (2 b): x = a/b.  Prior 
to the simulations reported in [4], the phase behaviour of hard spheroids was only 
known for a few special values of x: (i) x = 1, hard spheres, which freeze at  + of close 
packing [5]; (ii) x -+ KI, thin hard needles (i.e. Onsager’s model)--this system has a 
transition to the nematic phase at vanishing volume fraction; (iii) x -+ 0, thin hard 
platelets, which also form a low-density nematic [6]. The simulations of [4] show how 
the stability of the different phases of hard ellipsoids depend on their length-to-width 
ratio. Four distinct phases could be identified: the low-density isotropic fluid; an 
intermediate-density nematic liquid-crystalline phase, which is only stable if the 
length-to-width ratio of the ellipsoids is larger than 2.5 or less than 0.4; and a 
high-density orientationally ordered solid phase. In the case of weakly anisometric 
ellipsoids an orientationally disordered solid phase was also observed. 

An obvious question is whether hard-core molecules can only form nematic liquid 
crystals. For instance, one might wonder if hard ellipsoids of revolution can also form 
a smectic phase. 

The answer to this last question is almost certainly ‘no’. The reason is the 
following: smectic phases tend to have a large degree of orientational order. Hence, 
to a first approximation, we can assume that a smectic consists of perfectly aligned 
non-spherical molecules. However, a system consisting of hard ellipsoids of revolution 
with axial ratio a/b, all parallel to the z-axis (say), can be mapped onto the hard-sphere 
fluid by a simple scaling of all z-coordinates with a factor b/a. Since hard spheres 
apparently do not form smectics, parallel hard ellipsoids cannot do so either. So, 
unless the orientational degrees of freedom stabilize the smectic phase (and this seems 
unlikely), hard ellipsoids of revolution cannot form smectics. The question then arises 
as to whether smectic phases can be formed by other rigid hard-core models. This is 
not a priori obvious. In fact, to the author’s knowledge, most textbooks on liquid 
crystals do not even seriously consider this possibility. 

In order to explore the possibility of smectic order in rigid hard-core systems, we 
carried out Monte Carlo and molecular dynamics simulations on model systems 
consisting of parallel spherocylinders with diameter D and length L (i.e. the hemi- 
spherical caps were separated by a straight cylindrical segment of length L )  [7]. Since 
the particles in this system are always perfectly aligned, the low-density phase is a 
‘nematic’ fluid. The parallel spherocylinder fluid can be thought of as a model for a 
fluid of rod-like particles in a strong magnetic field. As mentioned above, we know 
that the corresponding hard-ellipsoid model will not exhibit smectic order. Simu- 
lations were carried out for systems of parallel spherocylinders with LID ratios of 
0.25,0.5, 1, 2, 3 and 5 and KI. The well-known case LID = 0 (i.e. hard spheres) was 
also studied, as a check. System sizes varying from 90 to 1080 particles were studied. 
For more technical details about the simulations see [8]. The main results can be 
summarized as follows. For LID ratios below 0.5, the fluid freezes directly from the 
nematic phase. However, for LID 2 0.5, a thermodynamically stable smectic phase 
is observed between the nematic and the solid phases. Finally, for the larger LID 
values (5 and GO), there was evidence for the presence of a columnar phase between 
the smectic and the solid. A schematic ‘phase diagram’ is shown in figure 1. Snapshots 
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Invited Lecture: Excluded-volume interactions 93 1 

Figure 1 .  Schematic phase diagram of parallel hard spherocylinders. the abscissa is the 
length-to-width ratio of the particles LID, the ordinate the density (divided by the density 
at regular close packing). Four phases can be identified: ( 1 )  The low-density ‘nematic’ 
phase; (2) a high-density solid phase; (3) for LID > 0.5, an intermediate-density smectic- 
A phase; and (4) for LID > 5 ,  a columnar phase between the smectic and the solid 
phases. Two-phase regions are indicated by grey areas. The precise nature of the smectic- 
columnar transition in the limit LID + co is not yet clear, since this transition is very 
sensitive to finite-size effects. 

NEMATIC SMECTIC SOLID 

I I I I I I I I I  
I I I I I I I I I  
I I I I I I I I I  
IIIIIIIII 
I I I I I I I I I  
I I I I I I I I I  
III111111 

~ I I I I I I I I I  

Figure 2. ‘Snapshots’ of molecular configurations of a system of parallel hard spherocylinders 
with LID = 5. The density increases from left to right from 24 per cent of regular close 
packing (nematic phase), to 62 per cent (smectic-A phase), to 89 per cent (crystalline solid 
phase). 

of typical molecular configurations corresponding to the nematic, smectic and solid 
phases of hard parallel spherocylinders are shown in figure 2. 

Of course, a model system consisting ofparallel spherocylinders is rather unphysical. 
It is therefore of considerable interest to know if a system of freely rotating hard-core 
molecules can form a smectic phase. This question is of some practical interest, in view 
of the recent experimental evidence that smectic ordering may take place in con- 
centrated solutions of rod-like DNA molecules [9]. We therefore carried out molecular 
dynamics and Monte Carlo simulations on a system of freely rotating spherocylinders 
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932 D. Frenkel 

with a length-to-width ratio LID = 5. The number of spherocylinders in a periodic 
box was chosen to be 576. This number of particles was needed to guarantee that a 
given particle would only interact with the nearest periodic image of any other 
particle. The initial configuration was instantaneously expanded to 20 per cent of the 
density of regular close packing. Subsequently, a constant-volume Monte Carlo 
simulation was carried out during which the original lattice rapidly melted while the 
distribution of molecular orientations became isotropic. After that, the system was 
compressed step-by-step to higher densities with density steps of 5 per cent of the 
density at regular close packing. At each density the system was equilibrated again. 
At low densities (35 per cent of close packing, and less), equilibration was always 
achieved in 20 000 trial moves per particle. Close to phase transitions, it was in general 
necessary to equilibrate for much longer. For the higher densities, where spontaneous 
ordering occurred, equilibration was achieved by alternating molecular dynamics 
simulations and (constant-stress) MC simulations. After equilibration, MC and MD 
production runs were carried out. 

At low densities the nematic order parameter S is always, within the statistical 
accuracy of the simulations, equal to zero. At 45 per cent of close packing S fluc- 
tuates strongly: its average value is equal to 0.3. This is a typical value for a nematic 
order parameter at the transition to the isotropic phase. As the density is increased 
even more, the nematic order parameter S grows from 0-3 at 45 per cent of close 
packing to more than 0.9 at 60.4 per cent of close packing. Although the fact that 
we observe spontaneous nematic ordering is gratifying, it is not really surprising. 
The more interesting question is whether the smectic ordering that is observed in 
parallel spherocylinders is preserved in spherocylinder fluid with full orientational 
freedom. 

Upon further compression of a well equilibrated and annealed nematic phase, an 
increase was noted in the amplitude of one-dimensional density fluctuations along the 
nematic director. As the density increased, the amplitude of these fluctuations grew, 
as did their decay times. At 60 per cent of close packing the system developed a static 
one-dimensional density modulation. However, no translational ordering was observed 
in the directions perpendicular to the director. This is the hallmark of a smectic-A 
liquid-crystalline phase. Although the fact that the latter phase formed spontaneously 
on compression indicates that it is stable with respect to both the isotropic and the 
nematic phases, its thermodynamic stability with respect to the crystalline state had 
to be established. This requires calculation of the free energy of both the solid and the 
liquid phase. Such calculations (reported in [lo]) show that the smectic phase of hard 
spherocylinders with LID = 5 is indeed thermodynamically stable. Figure 3 shows a 
typical snapshot of the smectic-A phase of a system of hard spherocylinders with 
LID = 5 .  

There are nevertheless several qualitative differences between the phase diagrams 
of parallel and freely rotating spherocylinders. First of all, the freely rotating 
spherocylinders must always have an orientationally disordered low-density phase. In 
contrast, the parallel spherocylinder fluid remains (by construction) a nematic, even 
in the dilute-gas phase. More interesting for the present discussion is the observation 
that, whereas parallel spherocylinders with LID = 5 appear to form a columnar 
phase, freely rotating spherocylinders with the same LID ratio apparently do not. 
There is in fact a good reason for this difference in behaviour. To see this, we should 
look more closely at the ‘scaling’ behaviour of long parallel spherocylinders with 
length-to-width ratio LID. Let us assume that the particles are aligned parallel to 
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Invited Lecture: Excluded-volume interactions 933 

Figure 3. ‘Snapshot’ of a molecular configuration of 1152 freely rotating hard spherocylinders 
with LID = 5 at a density of 62.5 per cent of regular close packing. The bottom part 
of the figure shows a side view of the system. Smectic layering can clearly be recognized. 
The top half of the figure shows a view along the nematic director. Although this part 
of the snapshot shows appreciable local ordering, there is no long-range translational 
order in the smectic planes. Nor is there any evidence for long-range bond-order (see 
11 11). 

the z-xis. If we scale all z-coordinates with a factor D / L  then the shape of the 
spherocylinder changes. Instead of a cylinder of length L and diameter D with 
hemispherical caps, we now have a cylinder of length 1, with flattened (oblate hemi- 
spheroidal) caps. The axial ratio of the ellipsoidal caps is LID. In the limit of large LID 
the caps become flat, and the spherocylinders have transformed into capless cylinders. 
Note, however, that this scale transformation has no effect OL the statistical-mechanical 
equilibrium properties of the model system. Hence we may take the point of view that 
a system of long parallel spherocylinders is in fact a model for a system of short 
capless cylinders. And, seen in this light, it is not surprising that such a model exhibits 
a columnar phase. 

Now consider what happens if we allow the molecules in our model to rotate. In 
this case it does make a difference whether we are considering long spherocylinders or 
short capless ‘platelets’. Any small rotation of a long axis of the spherocylinder away 
from the z-direction will destroy the mapping from spherocylinder to platelet. So, if 
we are interested in the effect of orientational freedom on a system of parallel 
spherocylinders with a given LID ratio, it is not sufficient to study only freely rotating 
spherocylinders with the same LID ratio. We should also consider the effect of free 
rotation on the flat plate-like particles that are equivalent to these spherocylinders, 
only when aligned. 

The present paper reports the first results of recent simulations on a system of 
freely rotating plate-like molecules with variable length-to-width ratio. 
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934 D. Frenkel 

2. The cut-sphere model 
Let us first put the problem posed in the previous section in a broader perspective: 

we wish to study the phase behaviour of the oblate counterpart of a spherocylinder, 
for a range of length-to-width ratios. Unfortunately, the choice of the oblate equivalent 
of a spherocylinder is not unambiguous, as it is for ellipsoids. The shape that is usually 
referred to as ‘oblate spherocylinder’ is best described as a ‘spheroplatelet’. Loosely 
speaking, a spheroplatelet is a convex body that can be generated by moving the 
centre of a sphere with diameter L over the surface of a circular disc with diameter 
D (note that a spherocylinder is obtained by moving a sphere with diameter D along 
a line segment with length L).  The low-density behaviour of this ‘spheroplatelet’ fluid 
has been studied numerically by Wojcik and Gubbins [ 121. Unfortunately, the sphero- 
platelet is not a particularly attractive model to use in numerical simulations, because 
the test for overlap between two such particles involves the evaluation of the distance 
of closest approach of two circular discs. And the latter calculation may require an 
iterative search. Although this, in itself, is no problem, it is often preferable to have 
an overlap criterion that only involves tests that can be evaluated analytically in a 
fixed number of steps. 

A second model that might be considered is the capless cylinder with length L and 
diameter D. This model has two drawbacks-one aesthetic, the other numerical. The 
aesthetic drawback is that there is no LID ratio for which this model reduces to a 
sphere (this would constitute a natural separation between ‘prolate’ and ‘oblate’). The 
numerical drawback is much the same as for the spheroplatelet, only worse. One 
simulation of elongated (LID = 4.44) right cylinders has been reported by Duro et al. 
[14], who used a simpler, but approximate, overlap criterion. 

In the present paper yet another geometry is used to model plate-like molecules, 
namely the ‘cut sphere’. The cut sphere is obtained as follows: consider a sphere with 
diameter D. Now remove those parts of the sphere that are more than $ L  above, or 
below, the equatorial plane. What remains is a cheese-like object with flat caps and 
spherical rims (see figure 4). This model has the pleasant feature that the test for 
overlap involves a finite number of analytical evaluations. Moreover, in the limit 
LID = 1, the cut sphere reduces to a hard sphere. A disadvantage of the cut sphere 

Cut-sphere model 

Figure 4. Side view of a cut sphere with diameter D and thickness L. the cut sphcrc is shown 
in grey. To clarify the definition of the cut sphere, the contour of the original sphere has 
been indicated in this figure. In the limit LID = 1 the cut sphere reduces to an ordinary 
sphere. For L / D  -+ 0, the cut sphere becomes a cylindrical platelet. 
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Invited Lecture: Excluded-volume interactions 935 

is that, unlike the spherocylinder and the spheroplatelet, it is not the product of two 
simpler geometrical objects. 

The cut sphere is a hard convex body. Using the standard techniques applicable 
to such objects (see e.g. [14]), the second virial coefficient of cut spheres can be 
evaluated for arbitrary LID ratios: 

B, = +.nD3[cos 6,  (1 + 4 sin26,) + ~ ( C O S  O M  + 46, sin BM)(cos 6,  + t sin20,)], 

(1) 
where 6, = arccos (LID). 

At high densities, cut spheres can be stacked in a regular close-packed lattice. The 
volume fraction at regular close-packing is: ucp = 9 4 3  - (L/D)2]’’2.  Note that 
for LID = 1 (hard spheres), this reduces to the well-known hard-sphere result 
qcp = .n/n. For LID + 0 (flat cylindrical platelets), we obtain the two-dimensional 
hard-disc value qCp = n / n .  

To carry out the actual numerical test for overlap between two cut spheres, we 
must distinguish between different ‘collision’ geometries, viz rim-rim, cap-cap and 
cap-rim, where ‘rim’ denotes the spherical rim of the cut sphere and ‘cap’ the flat caps. 
All three types of test can be expressed in terms of explicit functions of the particle 
coordinates. In order to test if the overlap criteria work correctly, two tests were 
carried out. In one, the second virial coefficient was evaluated numerically by Monte 
Carlo sampling, and compared with the analytical expression (1). This test was 
satisfied to within the statistical accuracy of the numerical integration (for instance, 
for LID = 0.2, the MC result is BYc = 1.0846 i- 0.0022, while the exact result is 
B, = 1.08521 . . .). In the other test, the numerical overlap criterion was used to 
generate a configuration of non-overlapping cut spheres by Monte Carlo sampling. 
Next, test points were generated randomly on the surface of the cut spheres. A check 
was then made to see if any of these test points was contained in more than one cut 
sphere (this would imply hard-core overlap). This involves a completely different (and 
very simple, though not very efficient) test. No such overlap was ever detected. 
However, if the system was set up with an artificially generated overlap, the latter was 
detected simultaneously by both methods. 

3. Monte Carlo simulations 
Monte Carlo simulations were carried out on a system of cut spheres with 

LID = 0.1, over a range of densities between dilute gas and crystalline solid. Most 
simulations where performed on a system consisting of 256 cut spheres, except for 
some of the higher density runs, where a larger number of particles ( N  = 576) was 
employed. In all cases periodic boundary conditions were used: for the low-density 
systems the simulation box was cubic. For the crystalline phases the box was 
orthorhombic, but otherwise free to adjust to any changes in the shape of the 
crystalline unit cell. To study the behaviour of the fluid phase, the system was initially 
expanded from a regular close-packed lattice to a low density (10 per cent of regular 
close packing), at which density the system rapidly melted to form an isotropic fluid. 
The system was thereupon slowly recompressed to higher densities. Each compression 
step was followed by an equilibration run. The length of the compression plus 
equilibration run was 15 000 trial moves per particle. It was followed by a production 
run of another 10 000 trial moves per particle. The magnitude of the Monte Carlo trial 
move was chosen such that the average acceptance probability of trial moves was 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



936 D. Frenkel 

Figure 5. 

Figure 6. 

Figure 7. 
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around 20 per cent. During the production run, several radial and angular correlation 
functions (see below) were measured, and, in addition, the nematic order parameter 
and the pressure were monitored. The latter quantity was measured using the method 
of Eppenga and Frenkel IS]. In every case the final, equilibrated configuration of one 
compression step was used as the starting configuration for the next. Typically, the 
change in density on compression was 0.025, in reduced units. At a reduced density 
of 0.35 (i.e. at 35 per cent of regular close packing), it was observed that the system 
spontaneously ordered to form a nematic phase. However, the director of this nematic 
phase was not aligned with any edge of the cubic simulation box. The system was 
thereupon prepared in a well-equilibrated, pre-aligned nematic state at  the same 
density (e = 0.35). When the latter nematic was expanded to  e = 0.325, the nematic 
order was found to  disappear spontaneously. The subsequent compression runs were 
started from the pre-aligned nematic at e = 0.35. Finally, a series of runs was started 
from the crystalline state. In these simulations subsequent state points were generated 
by expansion, followed by equilibration. 

4. Results 
In order to illustrate the structural changes that take place in the cut-sphere fluid 

as the density is increased, figure 5, 6 and 7 show snapshots of typical equilibrated 
configurations obtained at a reduced density e = 0.3 (figure 5), e = 0.35 (figure 6) 
and e = 0.525 (figure 7). The configuration in figure 5 corresponds to an isotropic 
phase. Indeed, at this density, the nematic order parameter fluctuates around 0, and 
orientational correlation functions g,(r)  = (P,(u(O) * u(Y))) for 1 = 2 and 4, decay to 
zero essentially within one molecular diameter. At e = 0.35 the system is in a nematic 
phase, as can be clearly seen from figure 6. The snapshot shows that there still is an 
appreciable amount of orientational disorder in the system. Nevertheless, the orien- 
tational order parameter S = (P,(cos 0)) has an average value of 0.73 f 0.02. As 
was mentioned above, a slight expansion of the system to a reduced density e = 0.325 
results in the disappearance of the nematic order. It seems likely that the density 

Figure 5. Snapshot of an instantaneous configuration of a system of 256 cut spheres at a 
reduced density e = 0.30. At this density the system is in the isotropic phase. For the 
sake of clarity, the cut spheres are represented by infinitely thin discs with a diameter that 
is about 50 per cent of the true diameter. The orange and blue colouring distinguish the 
‘top’ and ‘bottom’ of the platelets. As the model itself does not distinguish between top 
and bottom, this colouring makes it possible to see if there is any residual alignment in 
the system. 

Figure 6. Snapshot of an instantaneous configuration of a system of 256 cut spheres at a 
reduced density e = 0.35. This system was prepared in a nematic phase and left to relax 
for 50 000 trial moves per particle. However, the order parameter was already stable at 
a value of S = 0.73(2) at a run of half this length. The present snapshot shows a ‘top’ 
view of the system, along the nematic director. Note that most platelets are approximately 
perpendicular to the director, and very few have lost their original alignment (for the 
meaning of the colouring, see figure 5). 

Figure 7 .  Snapshot of an instantaneous configuration of a system of 256 cut spheres at a 
reduced density e = 0.525. This system was slowly compressed from the nematic phase 
and left to relax for 50 000 trial moves per particle. The present snapshot shows a ‘top’ 
view of the system, along the nematic director. Note that most platelets are organized in 
somewhat buckled columns. For the meaning of the colouring, see figure 5. 
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938 D. Frenkel 

e = 0.325 is quite close to the isotropic-nematic transition point, because the decay 
of the initial nematic order proceeds very slowly (from S = 0.7 to S = 0.25 requires 
more than 6106 trial moves). Further stepwise compression of the nematic phase (in 
steps Ap = 0.025) results in an increase of the overall orientational order, and, in 
addition, increasing local ordering is observed in the fluid. As the system is compressed 
to a reduced density of e = 0.45, there is an increasingly clear tendency of the system 
towards local columnar ordering. The ‘nucleation’ of a columnar phase is greatly 
facilitated by allowing the shape of the periodic box to fluctuate. In fact, if the cubic 
box is allowed to become orthorhombic, the pressure of the system is found to drop 
rapidly, and ‘nucleation’ of a hexagonal columnar phase is observed. Figure 7 shows 
a snapshot of such a spontaneously nucleated columnar phase. On closer inspection, 
it turns out that the nucleated columnar structure contains some defects. 

In order to prepare a defect free columnar phase, a series of simulations were 
performed in which the system was expanded from the crystalline phase. As it turns 
out, true crystalline order already disappears at quite high densities ( e  > 0.75). This 
can, for instance, be seen by direct inspection of a snapshot of the molecular con- 
figuration at a reduced density of e = 0.65 (figure 8). This figure shows that, although 
the molecules are arranged in a regular hexagonal array of columns, there is consider- 
able disorder inside these columns. A more quantitative measure for the absence of 
long-range positional ordering in the direction of the column axis is provided by the 
‘longitudinal’ density correlation function g,,(r) = ( e(O)e(r))/( e)’, where Y measures 
the displacement along the nematic director. In a true crystalline solid this correlation 
function would have a long-range oscillatory modulation, due to the periodicity of the 
lattice. As can be seen in figure 9, no such behaviour is observed in the cut-sphere 

p = 0.65 

p = 0.50 

Figure 8. Top: snapshot of an instantaneous configuration of a system of 576 cut spheres at 
a reduced density e = 0.65. This system was starled in a crystalline configuration and 
left to relax for 20000 trial moves per particle. The figure shows a view from three 
mutually perpendicular directions (‘x, y ,  2’). The left-most and right-most pictures 
provide a side view of the columnar structure. These two pictures show that there is 
considerable disorder in the columns. The middle picture represents a ‘top’ view. It shows 
the hexagonal columnar lattice. In order to  provide a better view of the columnar 
structure, the cut spheres arc rcpresented by line-segments of length L along the molecular 
symmetry axis. Bottom: as in the top half of the figure, but for a system of cut spheres 
at a reduced density e = 0.50. This system was slowly expanded from a columnar 
configuration a t e  = 0.65 and left to relax for 20000 trial moves per particle. Note that 
the hexagonal columnar lattice has become quite diffuse. 
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0.5 I 4 0.5 
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Figure 9. Density-density correlation function gll ( r ) ,  where r is the distance along the nematic 
director. Two densities are shown: e = 0.65 (for a snapshot, see figure 8), and e = 0.60. 
In a crystalline phase the amplitude of the oscillations in g,,  ( r )  would decay to a finite level 
as r -+ 00. In contrast, in a columnar phase these oscillations are expected to decay to 
zero. In the present figure they decay to a value close to zero within a few ‘lattice 
spacings’. The oscillations grow again for large values of r .  This is simply a consequence 
of the periodic boundary conditions. 

system at a reduced density e = 0.65. Rather, the oscillatory decay over 4-5 lattice 
spacings. The range of the oscillations in gll ( r )  is a measure of the distance over which 
positional correlations in the column direction persist. As can be seen in figure 9, this 
range is even shorter for e = 0.60. 

Expanding the initially crystalline system even more, we see that the columnar 
ordering becomes increasingly diffuse (see figure 8). At a reduced density of e = 0.45 
it has all but disappeared. At that density the pressure of the expanded columnar 
system has become equal to that of the compressed nematic. The present evidence 
(hysteresis, ‘nucleation’) strongly suggests that the transition from the nematic to to 
columnar phase is first-order. However, at  this stage we have not yet completed the 
calculation of the thermodynamic coexistence line. 

5. Conclusions 
The results reported in this paper provide the first (numerical) example that 

excluded-volume effects alone can induce columnar ordering in a system of freely 
translating and rotating plate-like molecules. No special attractions are needed to 
make the disc-like molecules stack in columns. Of course, this does not imply 
that specific attractions, or, for that matter, the effect of molecular flexibility, are 
unimportant for the formation of such liquid-crystalline phases. On the contrary, 
these factors are of as crucial an importance for the stability of discotics as they are 
for nematics and smectics. However, excluded-volume effects are all that is needed in 
order to understand why discotics form in the first place. Note, however, that the 
packing effects that determine whether or not a particular model will form a discotic 
are quite subtle: cut spheres do  become discotic, oblate ellipsoids do not. Similarly, 
prolate spherocylinders may form a smectic, unlike ellipsoids with the same overall 
length-to-width ratio. Finally, it even appears that the formation of something as 
‘simple’ as a nematic depends not just on the overall aspect ratio of a molecule: oblate 
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ellipsoids form a nematic for all axial ratios below 0.4 [4]. In contrast, preliminary 
results for other cut-sphere model systems [15] seem to indicate that cut spheres that 
are twice as oblate (LID = 0.2) still do not form a nematic. 

Although the hard-core models that have been discussed here are very simple, they 
give rise to a surprisingly rich variety of possible ordering phenomena. Of course, real 
mesogens are neither hard rods nor platelets. Nevertheless, it is the author’s opinion 
that if we can gain a better understanding of the relation between the phase diagram 
of hard-core molecules and their molecular shape, then we should be in a better 
position to understand, and predict, the phase behaviour of real liquid crystals. 
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supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek’ 
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